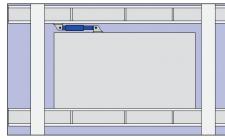
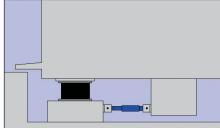
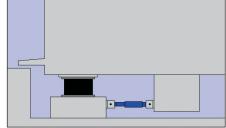
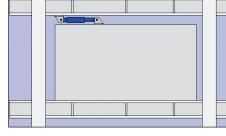
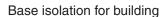

Damper

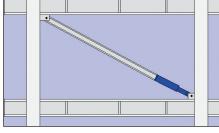

A JARRET STRUCTURES damper is designed to dissipate seismic or dynamic energy on a structure. JARRET STRUC-TURES dampers work in tension and compression. The dampers can reduce longitudinal and transverse or vertical displacement of a deck. They can be installed, for example, longitudinally between the deck and the abutment, or in transverse between the deck and the pier structure.

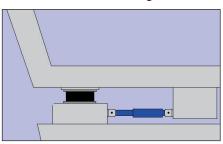

Dampers can be installed at different locations in a building for brace isolation or base isolation systems. Seismic energy is dissipated in the damper unit instead of being dissipated in the concrete or steel structure. JARRET STRUCTURES can accommodate transverse and longitudinal seismic displacement, and at the same time allow longitudinal displacement such as creep shrinkage and thermal expansion or contraction of the structure.

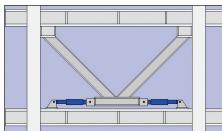

Working Principle

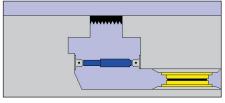

A JARRET STRUCTURES damper works on the principle that rapid passage of viscous fluid through a narrow orifice or port generates high resistance, which then dissipates a large amount of energy as heat.





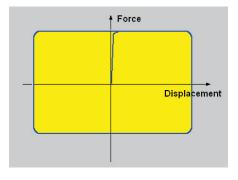


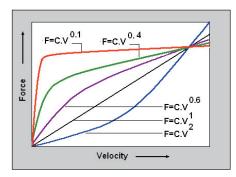




Protection of a building by

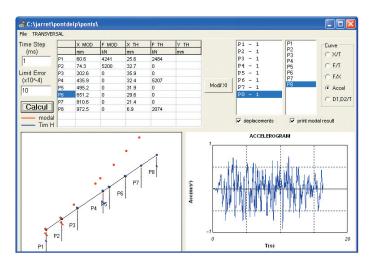
systems

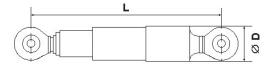

Transverse protection for bridge

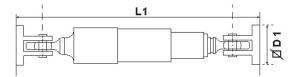


Longitudinal protection for bridge frame isolation or brace isolation

Performance


The graphs to the right show the performance generated by a damper during a dynamic event at 0.2 m/second velocity. The value of the velocity exponent of a JARRET STRUCTURES damper can vary from 0.1 to 0.4. As a result, significant damping force levels are achieved at much lower velocity values, while at the same time limiting the amount of force increase at higher velocities.




Selection of Unit

The selection of the appropriate unit must be done by implementing the behavior law of the unit into dynamic analysis software. The behavior law of a JARRET STRUCTURES damper is $F = C.v^{\alpha}$. This is a non-linear behavior law. The value of α can vary from 0.1 to 0.4. A modal analysis will not be possible with a non-linear model. It is necessary to run a time-step analysis. In order to assist its customers, JARRET STRUCTURES is able to run such a pre-sizing analysis in order to determine the most appropriate unit to protect a structure. This preselection will have to be validated afterwards by the designer. In order to do such analysis, JARRET STRUCTURES needs to receive the main geometrical data of the structure and of the ground. The result of the analysis will provide the energy capacity required to protect the structure, and the specifications of the units required. All information such as force induced to the structure and displacement is also provided.

Dimension of Units

Unit	L (mm)	L1 (mm)	D (mm)	D1 (mm)	Stroke (mm)	RM (KN)
ASR50-100	450	540	60	110	100	50
ASR100-100	490	610	90	110	100	100
ASR150-100	620	740	115	144	100	150
ASR300-100	720	860	155	176	100	300
ASR500-100	800	1000	170	210	100	500
ASR750-100	860	1110	230	280	100	750
ASR1000-100	930	1200	250	340	100	1000
ASR1250-100	1000	1300	280	340	100	1250
ASR1500-100	1050	1350	310	340	100	1500
ASR2000-100	1150	1470	430	360	100	2000
ASR2500-100	1250	1660	440	460	100	2500
ASR3000-100	1350	1760	450	460	100	3000

 $L = total\ length$, at mid stroke, for $S = 100\ mm$ or $+/-50\ mm$

For S < or > 100 mm, L = L + 2.5 (S - 100) All dimensions are subject to modification.

Temperature and Aging

A variation of the outside temperature, which can range from -55°C to + 80°C, does not change the amount of energy dissipated per cycle. There is no aging of the silicone fluid. The JARRET STRUCTURES units have been tested in very severe environmental conditions, including fire.

Installation

A damper can be installed easily with standard anchors. An installation manual is provided.

Maintenance

JARRET STRUCTURES dampers are maintenance free. A regular visual inspection can be done on a periodic basis in order to check the corrosion protection system.